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Abstract

For Newtonian concentric annular flows analytical solutions are obtained under imposed asymmetric constant wall heat fluxes as well
as under imposed asymmetric constant wall temperatures, taking into account viscous dissipation and for fluid dynamic and thermally
fully-developed conditions. Results for the special case of the heat flux ratio for identical wall temperatures and the critical Brinkman
numbers marking changes of sign in wall heat fluxes are also derived.

Equations are presented for the Nusselt numbers at the inner and outer walls, bulk temperature and normalised temperature distri-
bution as a function of all relevant non-dimensional numbers. Given the complexity of the derived equations, simpler exact expressions
are presented for the Nusselt numbers for ease of use, with their coefficients given in tables as a function of the radius ratio.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A common geometry in heat exchangers is the concen-
tric annular duct which has been the topic of countless heat
transfer and fluid mechanics research, as summarized by
Shah and London [24] and Kays et al. [12], amongst others.
Other common industrial applications of annular flows in
the laminar regime, for which this work is quite relevant,
are tube extrusion of high viscosity fluids [1], cooling of
electronic components and transmission cables. In spite
of the effort, the literature still shows gaps of information
for some conditions of operation, which we aim to reduce
with this contribution. Analytical solutions, such as those
obtained here, also serve as test cases for validating numer-
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ical solutions, have a pedagogical motivation and provide
the simplest, most efficient way to perform parametric
investigations of the effects of independent variables on
output quantities.

The objective of this work is to present analytical heat
transfer solutions for the annular flow of very viscous
Newtonian fluids, i.e., including effects of viscous dissipa-
tion. Here, only thermally and dynamically fully-developed
flow is considered and two different sets of wall boundary
conditions are separately investigated: imposed heat fluxes
and imposed wall temperatures. In each case the imposed
conditions are peripherally and axially constant, but can
take identical or different values at the inner and outer
walls. Our general solutions remain valid even when
Br = 0, except for identical wall temperatures which
requires a completely different approach. Note, that the
combined situation with imposed heat flux at one wall
and imposed wall temperature at the other wall is not
addressed here.

Since the fluid properties are taken as independent of
temperature, the fluid dynamic problem is decoupled from
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Nomenclature

Br Brinkman number, Eq. (10) for wall flux BC and
Eq. (27) for temperature BC

DH hydraulic diameter, DH � 2d
c1, c2, c3, c4 constants of integration
cp specific heat
h heat transfer coefficient
k thermal conductivity
Nu Nusselt number, Nu � 2dh/k
p,x axial pressure gradient
Pr Prandtl number, Pr = gcp/k
_q heat flux
r radial coordinate
Re Reynolds number, Re = qU2d/g
Ri inner radius of concentric annulus
Ro outer radius of concentric annulus
T fluid temperature
T mass-averaged temperature
T + normalised temperature for the uniform wall

heat flux case, Eq. (8a)
T 0 normalised temperature for the uniform wall

heat flux case, Eq. (8b)
T* normalised temperature for the uniform wall

temperature case, Eq. (19)
u axial velocity
u+ normalised axial velocity, u+ � u/U
U bulk velocity

Uc characteristic velocity, Uc = �p,xd
2/(8g)

x axial coordinate
x 0 normalised axial coordinate, x 0 � 2x/(dRePr)
X ratio of characteristic and bulk velocities, Eq.

(6)
y+ radius normalised by inner radius, y+ = r/Ri =

r/(dY)
yþ� non-dimensional zero shear stress radius, Eq. (7)
Y geometric parameter, Y = j/(1 � j)

Greek symbols

d annular gap (d � Ro � Ri)
U ratio of outer and inner wall heat fluxes,

U � _qo= _qi

g dynamic viscosity of fluid
j radius ratio (j � Ri/Ro)
srx shear stress
X parameter, X � 4BrX
W parameter, W � 4XY 4yþ

2

�

Subscripts

i refers to inner wall
in refers to inlet
o refers to outer wall
w refers to any wall
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the thermal problem. The solution of the fully-developed
isothermal annular flow was obtained in the XIXth century
following the seminal work of Boussinesq in 1868, accord-
ing to Lamb [14] and Shah and London [24].

In the absence of viscous dissipation the energy equation
is homogenous and linear and the superposition principle
can be used to obtain solutions for complex situations
made from linear combinations of simples cases, as is
explained in any basic Heat Transfer textbook (for
instance, see [4]). For the so-called four fundamental types
of boundary conditions in doubly connected ducts this
problem has been completely solved by Lundberg et al.
[16,17], according to Shah and London [24], including the
corresponding thermal entry-length problems. For other
boundary conditions, such as a specific variable wall tem-
perature or heat flux, Shah and London [24] present an
extensive list of works.

Available literature on heat transfer with viscous dissi-
pation is scarcer than for the homogenous case. For
fully-developed pipe and channel flows, analytical solutions
have been obtained originally by Brinkman [3] and Ou and
Cheng [22]. For non-Newtonian power-law fluids (thus
including the Newtonian case) Toor [25] and Gill [9] pre-
sented analytical solutions for the Graetz problem and
fully-developed flow in pipes, respectively. Forrest and Wil-
kinson [8] added temperature effects in their numerical
investigation of the Graetz pipe flow problem with con-
stant wall temperature. Recently, effects of viscous dissipa-
tion have been investigated analytically in the context of
flow through porous media: Kuznetsov et al. [13] studied
the Graetz problem in a fully-developed pipe flow through
a porous medium for constant wall temperature, and Nield
et al. [20] investigated fully-developed channel flow
through a saturated medium with walls either at uniform
temperature or uniform heat flux. Other heat transfer
investigations for Newtonian pipe flow with viscous dissi-
pation are listed in page 218 of Bird et al. [2].

For annular flow the available solutions are few and usu-
ally do not account for viscous dissipation. It is the case of
Lundberg et al. [16,17] and Reynolds et al. [23] for Newto-
nian fluids and of Hong and Matthews [11] for power-law
fluids, the latter case referring to the Graetz problem and
listing a few other studies, all without viscous dissipation.
Exceptions to this state of affairs are the analytical work
of Urbanovich [26] and the numerical investigation of Lin
[15]. Unfortunately, the former solution is wrong since
Urbanovich ignored the effect of internal heat generation
in the streamwise term of the thermal energy balance. Lin
[15] also accounted for viscous dissipation in their investi-
gation of Couette–Poiseuille flows of power-law fluids for
constant wall temperature. The recent investigations of
Herwig and Klemp [10] and Moghadam and Aung [19]
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for Newtonian annular flow were also numerical, but
neglected viscous dissipation and concentrated on assessing
the effect of variable properties. The more recent extensive
investigations of Manglik and Fang [18] and Fang et al. [7]
for flow of Newtonian and non-Newtonian fluids in
concentric and eccentric annuli are again numerical and
also do not account for viscous dissipation. Neither, there
is any mention of work done for concentric annuli with
Newtonian fluids, and accounting for viscous dissipation,
in the extensive literature survey of Fang and Manglik [6].

Therefore, as far as we are aware of, solutions are lack-
ing for heat transfer in concentric annular flows of very
viscous Newtonian fluids, including effects of viscous dissi-
pation for at least any combination of imposed heat fluxes
or imposed temperatures at both walls for which this paper
presents analytical solutions.

The remaining of this paper is organized as follows: in
Section 2 the thermal energy conservation equation and
the fully-developed hydrodynamic solution are presented.
This is followed in Sections 3 and 4 by the presentation
of the solutions for imposed wall heat fluxes and imposed
wall temperatures, respectively. In each of these sections
the thermal energy equation is normalised first and various
thermal quantities are defined prior to the presentation of
the final analytical solution. To complement the analytical
expressions, we present in each section some results in tab-
ular form and discuss some results. The paper ends with a
summary of the main results and conclusions.

2. Governing equations

The two cases considered are for dynamic and thermally
fully-developed steady laminar flow of Newtonian fluids in
concentric annuli with temperature independent properties
and accounting for internal viscous heating of the fluid.
The annulus has inner and outer walls of radii Ri and Ro,
respectively, defining the radius ratio j � Ri/Ro and annu-
lar gap d � Ro � Ri.

The energy equation to be solved is

k
1

r
o

or
r
oT
or

� �
þ srx

du
dr
¼ qcpu

oT
ox
; ð1Þ

where the temperature T varies with the axial and radial
coordinates, denoted x and r, respectively, and k, q and
cp are the thermal conductivity, density and specific heat,
respectively. The second term on the left-hand-side ac-
counts for viscous dissipation with u representing the axial
velocity and sxr the shear stress.

This second order differential equation is solved subject to
two types of boundary conditions, to be imposed separately:

(1) peripherally and axially constant heat fluxes at both
walls
r ¼ Ri ! �k
oT
or
¼ _qi ð2aÞ

r ¼ Ro ! T ¼ T oðxÞ ð2bÞ
with the outer wall heat flux imposed later when cal-
culating the streamwise derivative of the bulk
temperature;

(2) peripherally and axially constant wall temperatures
r ¼ Ri ! T ¼ T i ð3aÞ
r ¼ Ro ! T ¼ T o ð3bÞ
The fluid properties are taken as independent of fluid
temperature, therefore the thermal problem is decoupled
from the fluid dynamic solution. This fully-developed flow
solution is available in the literature and is written here in
non-dimensional form for the velocity in Eq. (4) and for
the shear stress in Eq. (5).

uþ � u
U
¼ 4XY 2yþ

2

� ln yþ � yþ
2 � 1

2yþ2

�

" #
ð4Þ

sþrx �
srx

gU=d
¼ 4XYyþ�

yþ�
yþ
� yþ

yþ�

� �
! sþrx ¼

1

Y
duþ

dyþ
ð5Þ

In these equations U represents the bulk velocity and X is
the ratio between a characteristic (Uc) and the bulk veloc-
ities (X � Uc/U). The characteristic velocity Uc is a normal-
isation of the constant pressure gradient, Uc = �p,xd

2/(8g)
with g denoting the dynamic viscosity of the fluid. Y is a
geometric parameter (Y = j/(1 � j)), y+ is the radius nor-
malised by the inner cylinder radius (y+ = r/Ri) and yþ� is
the non-dimensional radius for zero shear stress. X and
yþ� are given by Eqs. (6) and (7), respectively.

X ¼
ðj� 1Þ2 ln 1

j

� �
ðj2 þ 1Þ ln 1

j

� �
þ ðj2 � 1Þ

ð6Þ

yþ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2

2j2 lnð1=jÞ

s
ð7Þ

Prior to its integration, the energy equation is made non-
dimensional for generality, but since the normalisation is
problem-dependent this is carried out separately in Section 3.

3. Solution for imposed uniform wall heat fluxes

3.1. Non-dimensional energy equation

For imposed uniform wall heat fluxes it is easy to dem-
onstrate that oT =ox ¼ oT w=ox ¼ oT=ox is a constant (c.f.
[4]), with the subscript w denoting any wall and the overbar
denoting mass averaging. To make the energy equation
non-dimensional for this problem, two different normalisa-
tions are used for the temperature. For the terms on the
left-hand-side of Eq. (1) the definition embodied in Eq.
(8a) is used, based on the temperature at the outer wall
(To(x)), whereas for the right-hand-side of Eq. (1) the
above equality of the longitudinal temperature gradient is
used together with the normalisation of Eq. (8b), where
Tin represents the inlet temperature.

Tþ � T � T o

2d _q=k
ð8aÞ

T 0 � T � T in

2d _q=k
ð8bÞ
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The axial coordinate is normalised as x 0 � 2x/(dRe Pr),
with the Reynolds and Prandtl numbers defined as Re =
qU2d/g and Pr = gcp/k, and Eq. (1) becomes

1

yþ
o

oyþ
yþ

oTþ

oyþ

� �
þ YBrsþrx

duþ

dyþ
¼ Y 2uþ

dT 0

dx0
ð9Þ

where the derivative on the right-hand-side is a constant,
discussed below and the Brinkman number Br is defined
in Eq. (10).

Br ¼ gU 2

2d _q
ð10Þ

This definition is adequate for general problems with im-
posed wall heat flux since the fluxes can be arbitrarily
defined. However, the use of the perimeter-average wall
heat flux _q of Eq. (11), based on the inner ð _qiÞ and outer
ð _qoÞ wall heat fluxes, turns Br into a quantity dependent
on j. This definition is not usual in the less general solutions
found in the literature and must be taken into account when
performing comparisons. The perimeter-average wall heat
flux is

_q ¼ _qiRi þ _qoRo

Ri þ Ro

¼ _qi

jþ U
1þ j

ð11Þ

where U stands for the ratio between the outer and inner
wall heat fluxes, U � _qo= _qi.

The non-dimensional heat flux boundary conditions
(Eqs. (2a) and (2b)) take the forms

yþ ¼ yþi ¼ 1! oTþ

oyþ
¼ jðjþ 1Þ

2ðjþ UÞðj� 1Þ ð12aÞ

yþ ¼ yþo ¼
1

j
! Tþ ¼ 0 ð12bÞ

The outer wall boundary condition is a consequence of the
normalisation used for temperature, c.f. Eq. (8a). The outer
wall heat flux is indirectly imposed when the derivative on
the right-hand-side of Eq. (9) is calculated with the follow-
ing energy balance over a control volume encompassing the
annulus and both walls.

_qi2pRidxþ _qo2pRodxþ U2pðRijswij þ RojswojÞdx

¼ qUpðR2
o � R2

i ÞcpdT ð13Þ

leading to the following constant streamwise gradient of
non-dimensional bulk temperature:

dT 0

dx0
¼ 1þ 8BrX ð14Þ
c1 ¼
Wðjþ UÞðj� 1Þð4Xyþ

2

� � 2yþ
2

� þ 1Þ � 4jyþ
2

� ðjþ 1Þ
8Wyþ2

� ð1� jÞðjþ UÞ

c2 ¼
Xyþ

2

� ðln jÞ2

2
� 4Xð2j2 � 1Þ þ 4j2ð1� 2yþ

2

� Þ � 1

32j4yþ2

�

þ fWðjþ UÞðj� 1Þ½4Xyþ
2

� ðj2 � 1Þ þ j2ð1� 2yþ
2

� Þ � 2yþ
2

� �
8Wj2yþ2

� ð1� jÞðjþ UÞ
Hence, the non-dimensional energy equation contains a
single definition of non-dimensional temperature. Note
that when presenting the final solution for the bulk temper-
ature in Section 3.2, the definition Tþ appears naturally.

3.2. Analytical solution

Integration of the energy equation (Eq. (9)) was carried
out with the help of the symbolic mathematics code Derive
5 from Texas Instruments.

The heat transfer from the walls to the fluid was quan-
tified via the inner wall (Nui) and outer wall (Nuo) Nusselt
numbers. Each Nusselt number is defined as Nu � 2dh/k,
where the hydraulic diameter (DH � 2d) is used, and h is
the heat transfer coefficient at that wall calculated from
_qw ¼ hwðT w � T Þ. Normalising temperatures by Eq. (8a),
the Nusselt number becomes Nuw ¼ _qw=½ _qðTþw � TþÞ� and
using Eq. (11) leads to expressions based on temperature:

– at the inner wall,

Nui ¼
ð1þ jÞ
ðjþ UÞ

1

ðTþi � TþÞ
ð15aÞ

– at the outer wall,
Nuo ¼
Uð1þ jÞ
ðjþ UÞ

1

ðTþo � TþÞ
ð15bÞ

The wall temperatures were calculated from the derived
temperature profile and the normalised bulk temperature
was calculated with the following integration:

Tþ ¼
Z 1=j

1

2
j2

1� j2
uþTþyþdyþ ð16Þ

The analytical solution is given by long equations pre-
sented in Appendix, Part 1, at the end. Here, the simple
equation for the temperature profile is presented together
with compact expressions for the Nusselt numbers useful
for engineering calculations.

The non-dimensional temperature profile, T+(y+) is
given by

Tþ ¼ �XWyþ
2

� ðln yþÞ2

2
þ Wyþ

2ð2Xþ 1Þ
4

þWc1

" #
ln yþ

�W½yþ4ð4Xþ 1Þ � 4yþ
2ð2X� 2yþ

2

� þ 1Þ � 32yþ
2

� c2�
32yþ2

�
ð17Þ

where parameters X = 4BrX and W ¼ 4Xyþ
2

� Y 4 and the
integration constants c1 and c2 are
ð18Þ

� 4j3yþ
2

� ðjþ 1Þg ln j ð19Þ
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Compact expressions are useful for engineering calcula-
tions and the following equations for the inner and outer
walls Nusselt numbers were produced from the exact
expressions in Appendix A.

Nui ¼
a1

Br U
j þ 1
� �

þ a2 � Uþ a3

ð20aÞ

Nuo ¼
a1 � U

Br U
j þ 1
� �

þ b1 � Uþ b2

ð20bÞ

Coefficients ai and bi depend on the radius ratio j taking
the values listed in Table 1. These coefficients are exact to
within five significant digits since they were calculated from
the analytical equations in Appendix A for the specific val-
ues of the radius ratio j in Table 1 and so the equations
provide the same degree of accuracy for the Nusselt num-
ber regardless of Br and U, i.e., exact values in practical
terms. However, for different values of j the accuracy in
Nu of Eq. (20) depends on the interpolation method used
to determine the coefficients a and b. As an example, use
of linear interpolation to determine the coefficients for
j = 0.45 leads to values of Nui and Nuo accurate within
1%. Better accuracy requires the use of higher order inter-
polation schemes.

The analytical solution has limiting cases, some of which
have been obtained previously, and were used here to check
the validity of our solution: (i) the channel flow with iden-
tical wall heat fluxes and viscous dissipation of Oliveira and
Pinho [21] and Nield et al. [20] (in this latter work it is nec-
essary to consider zero porosity of the porous media inside
the channel); (ii) the pipe flow with viscous dissipation of
Oliveira and Pinho [21], (iii) the channel flow without vis-
cous dissipation of Shah and London [24] (their Eq. 273).
In all these cases our solutions match exactly the analytical
and numerical data in the literature.

A particularly interesting annular flow case corresponds
to heating or cooling at both walls leading to identical wall
temperatures (Tþi ¼ Tþo ). This happens for a heat flux ratio
of

Uc ¼ �
j½4ðln jÞ2 þ ð1� j2Þð3j2 þ 7Þ ln jþ 4ðj2 � 1Þ2�
4j4ðln jÞ2 þ ð1� j2Þð7j2 þ 3Þ ln jþ 4ðj2 � 1Þ2

ð21Þ
Table 1
Coefficients for the Nusselt number equations (20a) and (20b)

j a1 a2 a3 b1 b2

0.02 59.211 �7.5757 1.8104 12.507 �0.15151
0.05 25.078 �3.0737 1.4080 5.2333 �0.15369
0.1 13.463 �1.5645 1.1308 2.7849 �0.15645
0.2 7.5287 �0.80097 0.88584 1.5419 �0.16019
0.3 5.5087 �0.54185 0.76075 1.1178 �0.16256
0.4 4.4840 �0.41026 0.68112 0.90055 �0.16411
0.5 3.8622 �0.33027 0.62485 0.76683 �0.16513
0.6 3.4437 �0.27635 0.58252 0.67534 �0.16581
0.7 3.1423 �0.23749 0.54931 0.60824 �0.16624
0.8 2.9145 �0.20812 0.52246 0.55657 �0.16650
0.9 2.7362 �0.18514 0.50021 0.51533 �0.16663
1 2.5926 �0.16667 0.48148 0.48148 �0.16667
which is independent of the Brinkman number. However,
the amount of viscous dissipation affects the bulk tempera-
ture and the corresponding Nusselt numbers are

Nuo ¼
72ð1�jÞ½4ðlnjÞ2þð1�j2Þð3j2þ7Þ lnjþ4ðj2�1Þ2�½ð1þj2Þ lnjþ1�j2�2

AðlnjÞ4þBðlnjÞ3þCðlnjÞ2þDðlnjÞþ144ðj2�1Þ4

ð22Þ
Nui ¼

Nuo

Uc

ð23Þ

with coefficients A, B, C and D of

A ¼ 6ðj6 þ j4 þ j2 þ 1Þ½48Brðj� 1Þ2 þ 11ðj2 þ 1Þ�
B ¼ ½1056Brðj6 � 2j5 þ 2j4 � 2j3 þ 2j2 � 2jþ 1Þ
þ 299j6 þ 613j4 þ 613j2 þ 299�ð1� j2Þ

C ¼ ðj2 � 1Þ2½1512Brðj4 � 2j3 þ 2j2 � 2jþ 1Þ
þ 539j4 þ 926j2 þ 539�

D ¼ 18ð1� j2Þ3½48Brðj� 1Þ2 þ 25ðj2 þ 1Þ�
3.3. Discussion of results

Here, we analyze some results for imposed uniform wall
heat fluxes. These are positive when heating the fluid,
whereas a negative sign implies cooling.

For simultaneous wall heating or cooling at both walls
the heat flux ratio is positive, whereas the Brinkman num-
ber, Eq. (10), is positive for the former and negative for the
latter cases.

In general, viscous dissipation reduces the Nusselt
numbers, because viscous heating increases the fluid tem-
perature range within the annulus leading to higher differ-
ences between the wall and bulk temperatures. This
difference appears in the denominator of the convective
heat transfer coefficients. Exceptions to this behaviour
occur whenever there is a change in the sign of this temper-
ature difference leading to singularities in the Nusselt num-
bers. These are seen in Figs. 1 and 2, for the inner and outer
Nusselt numbers, respectively, in an annulus of j = 0.5 and
for intermediate values of U. For U 6 0.01 the heat transfer
characteristics are basically independent of U and corre-
spond to those of an annulus with insulated outer wall.
Correspondingly, for U P 100 the flow behaves as in annu-
lus with insulated inner wall.

In both figures, the Nusselt number approaches infinity
when the bulk temperature approaches the wall tempera-
ture, followed by a change of sign corresponding to a
change in their relative magnitudes. This is due first to
the heating/cooling effect of the other wall, but especially
because of the strong influence of the extra heat generated
by viscous dissipation interfering with the relative magni-
tudes of bulk and wall temperatures. The change in the rel-
ative magnitudes of the wall and bulk temperatures is well
shown in the temperature profiles of Fig. 3, which empha-
sizes the role of viscous dissipation. Only for small values
of Br (regardless of whether there is wall heating or cool-
ing) are the fluid and bulk temperatures limited by the
two wall temperatures.
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4. Solution for imposed uniform temperatures at walls

4.1. Non-dimensional energy equation

For this problem two normalisations are also used for
temperature and we must distinguish between different
and identical wall temperatures. The non-dimensional tem-
perature appearing in the energy equation T* is defined in
Eq. (24).

T � ¼ T � T i

T o � T i

when T i 6¼ T o ð24aÞ

T � ¼ T � T in

T w � T in

when T w ¼ T i ¼ T o ð24bÞ
Only the asymptotic solution, for which oT =ox ¼ 0, will be
presented here, since the asymptotic solution without vis-
cous dissipation for Ti = To has already been obtained
(see [24]). Upon substitution of the shear rate and shear
stress expressions, the non-dimensional energy Eq. (2)
becomes
1

yþ
o

oyþ
yþ

oT �

oyþ

� �
þ Br 4XY 2yþ�

yþ�
yþ
� yþ

yþ�

� �� �2

¼ 0 ð25Þ
The boundary conditions and the Brinkman number are
defined differently for different and identical wall tempera-
tures, as follows:
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(1) To 5 Ti
inner wall : yþ ¼ 1! T �i ¼ 0;

outer wall : yþ ¼ 1

j
! T �o ¼ 1

ð26Þ
Br ¼ gU 2

kðT o � T iÞ
ð27Þ
Setting Br = 0 we recover the solution of Shah and
London [24] as it should be whereas for Br!1
we get the same solution as for identical wall temper-
atures and for which both Nu values are independent
of Br.
(2) Tw = To = Ti,
Br ¼ gU 2

kðT w � T inÞ
ð28Þ

inner wall : yþ ¼ 1! T �i ¼ 1;

outer wall : yþ ¼ 1

j
! T �o ¼ 1

ð29Þ
4.2. Analytical solution

The Nusselt numbers at the inner and outer walls are
defined in Eqs. (30a) and (30b), respectively.

Nui ¼ �
2

Y

dT �

dyþ

			
yþ¼1

T �i � T �
ð30aÞ

Nuo ¼
2

Y

dT �

dyþ

			
yþ¼1

j

T �o � T �
ð30bÞ

The bulk temperature is calculated as in Eq. (16), except for
the use of the different non-dimensional temperature.
Therefore, it is now given by

T � ¼
Z 1=j

1

2
j2

1� j2
uþT �yþdyþ ð31Þ

The analytical solution for different and identical wall tem-
peratures are the same, except for the different definitions
above of the Brinkman number, normalised temperature
and inner wall temperature. As a consequence the con-
stants of integration c3 and c4 also differ. Below, only the
simple expression for the temperature profile is presented
together with compact expressions for the Nusselt num-
bers, useful for engineering calculations. The equations
for the other quantities are presented in Appendix, Part 2.

The non-dimensional temperature profile, T* is

T � ¼ �WXyþ
2

� ðln yþÞ2

2
þWXc3 ln yþ

�WXðyþ4 � 8yþ
2

� yþ
2 � 16c4yþ

2

� Þ
16yþ2

�
ð32Þ

with integration constants c3 and c4 depending on the bound-
dary conditions. For different wall temperatures (Ti 5 To)

c3 ¼ �
yþ

2

� ln j
2
�WX½j4ð8yþ

2

� � 1Þ � 8j2yþ
2

� þ 1� þ 16j4yþ
2

�
16WXj4yþ2

� ln j
ð33Þ

c4 ¼
1� 8yþ

2

�
16yþ2

�
ð34Þ

whereas for identical wall temperatures (Ti = To)

c3 ¼ �
yþ

2

� ln j
2
� j4ð8yþ

2

� � 1Þ � 8j2yþ
2

� þ 1

16j4yþ2

� ln j
ð35Þ

c4 ¼
1

WX
þ 1� 8yþ

2

�
16yþ2

�
ð36Þ

The exact solution was compared with limiting cases of
pipe and channel flow and the result match those in Coelho



Table 2
Coefficients for the Nusselt number equations (37) and (38)

j v1 v2 v3 e1 e2 e2

0 – – – 9.6 0 0
0.02 118.46 33.198 1.1002 11.573 �0.66396 �0.22520
0.05 64.509 17.199 1.0710 12.127 �0.85996 �0.28486
0.1 42.970 10.823 1.0349 12.717 �1.0823 �0.34967
0.2 30.329 7.0353 0.97749 13.541 �1.4071 �0.43788
0.3 25.506 5.5513 0.93044 14.189 �1.6654 �0.50176
0.4 22.883 4.7227 0.89022 14.755 �1.8891 �0.55224
0.5 21.210 4.1809 0.85517 15.273 �2.0904 �0.59382
0.6 20.039 3.7930 0.82423 15.757 �2.2758 �0.62893
0.7 19.168 3.4985 0.79667 16.218 �2.4489 �0.65912
0.8 18.491 3.2655 0.77191 16.659 �2.6124 �0.68542
0.9 17.947 3.0754 0.74953 17.086 �2.7678 �0.70858
1 17.5 2.9167 0.72917 17.5 �2.9167 �0.72917
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et al. [5] for imposed constant wall temperature for Newto-
nian fluids.

For ease of use, Eqs. (37) and (38) present simple expres-
sions for the Nusselt numbers at the inner and outer walls
respectively, as a function of the Brinkman number for the
case of different wall temperatures. Their coefficients
depend on j as listed in Table 2 and are exact to within five
significant digits since they were calculated from the analyt-
ical equations in Appendix A for those specific values of
the radius ratio j listed, i.e., these equations provide the
same degree of accuracy for the Nusselt number regardless
of Br, which in practical term means exact values. How-
ever, for values of j not in Table 2 the accuracy in Nu as
given by Eqs. (37) and (38) depends on the interpolation
methods used to determine the coefficients v and e. As an
example, the use of linear interpolation to determine the
coefficients for j = 0.45 leads to values of Nui and Nuo

accurate within 1%. Better accuracy requires the use of
higher order interpolation schemes.

Nui ¼
v1 � Br þ v2

Br þ v3

ð37Þ

Nuo ¼
e1 � Br þ e2

Br þ e3

ð38Þ

When the wall temperatures are identical, Nui = v1 and
Nuo = e1, i.e., there is no effect of the Brinkman number.

4.3. Discussion of results

Some of the results for different wall temperatures
(Ti 5 To) are discussed with the help of Figs. 4 and 5.
Now, a positive Brinkman number, Eq. (27), means that
the outer wall temperature is higher than the inner wall
temperature and vice versa for a negative Brinkman num-
ber. Two other conditions are to be considered: for low val-
ues of jBrj fluid heats at the warmer wall and cools at the
colder wall whereas for large values of jBrj the internal heat
generation raises the fluid temperature above the higher
wall temperature and the fluid cools at both walls. The crit-
ical Brinkman number separating these two thermal condi-
tions corresponds to the warmer wall behaving as an
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insulated wall, i.e., dT*/dy+jwall = 0 and is given by Eq.
(39a) for T �i > T �o and Eq. (39b) for T �i < T �o

Brc¼�
½ð1þj2Þ lnjþ1�j2�2

lnj½4j4ðlnjÞ2þð1�j2Þð7j2þ3Þ lnjþ4ðj2�1Þ2�
ð39aÞ

Brc¼�
½ð1þj2Þ lnjþ1�j2�2

lnj½4ðlnjÞ2þð1�j2Þð3j2þ7Þ lnjþ4ðj2�1Þ2�
ð39bÞ

Both these critical Brinkman numbers increase as j in-
creases from 0 to 1, exhibiting a steep gradient near
j = 0: for T �i > T �o, Brc increases from �0.33 to �0.167,
whereas for T �i < T �o it increases from 0 to +0.167. For each
value of the radius ratio the Nusselt numbers show singu-
larities at both Brc.

In Fig. 4, the variation of the inner Nusselt number with
the Brinkman number and the radius ratio is plotted. For
Br > 0 ðT �o > T �i Þ, the variation of Nui in Fig. 4(a) is mono-
tonic with both Br and j, with Nui increasing with the for-
mer and decreasing with the latter. T �i is always lower than
the bulk temperature T � and the heat flux at the inner wall
is always negative. When the relative magnitudes of the
inner and outer wall temperatures are reversed ðT �i > T �oÞ,
the variations of Nui with Br are no longer monotonic,
because of the changes in the signs of the heat flux and
of the temperature difference T �i � T � (cf. Eq. (30)). For
dT*/dy+ = 0 at the inner wall and a change of sign in the
wall heat flux, the Nusselt number changes sign monoton-
ically, as can be seen in Fig. 4(b) at �Br � 0.2–0.3, even
though T �i > T �. However, when the bulk temperature
increases due to viscous heating and T �i ¼ T �, Nui goes
through a singularity. For negative Brinkman numbers,
and T � > T �i , the Nusselt number becomes positive again,
now decreasing with viscous dissipation (Fig. 4(c)) because
the temperature difference T � � T �i raises faster than
dT*/dy+ at the wall, c.f. Eq. (30).

For the outer wall Nusselt number the behaviour is of
the same type as for Nui, although somewhat reversed,
therefore no data are plotted for Nuo.

Finally, in Fig. 5 radial profiles of normalised tempera-
ture T* are plotted as a function of the Brinkman number
for a radius ratio j = 0.5. Profiles are shown for both posi-
tive (upper part) and negative (lower part) Brinkman num-
bers. For Br > 0, the inner wall temperature is lower than
the fluid temperature, and there is increased cooling at this
wall as viscous dissipation is enhanced. At the outer wall,
however, in the absence of viscous dissipation (or for low
Brinkman numbers) its temperature is higher than the fluid
bulk temperature and consequently there is fluid heating.
As internal heat generation increases the outer wall heat
flux changes direction from fluid heating to fluid cooling,
although initially the outer wall temperature remains
higher than the bulk temperature. With further increases
in viscous dissipation the bulk temperature rises above
the outer wall temperature.

5. Conclusions

Analytical solutions are presented for fully-devel-
oped laminar convective heat transfer in concentric annuli
of Newtonian fluids of very high viscosity (viscous dissipa-
tion included) for the following boundary conditions:

(i) imposed uniform, but different, wall heat fluxes;
(ii) imposed uniform, but different, wall temperatures.

The results are presented as explicit equations for the
temperature profile, the inner and outer wall temperatures,
the mixing temperature and the inner and outer Nusselt
numbers, as a function of the Brinkman number, radius
ratio and, for the case with imposed wall fluxes, the wall
heat flux ratio. The special case of determining the wall
heat flux ratio for identical wall temperatures is also ana-
lysed and for imposed wall temperatures, a solution is also
given for the special case of identical wall temperatures,
which can not be used for Br = 0.

For ease of use, compact expressions are presented of the
Nusselt number as a function of the Brinkman number,
with the corresponding coefficients listed in tables for spe-
cific values of the radius ratio. The exact expressions are
also available in a useful manner, as FORTRAN codes at
the following site http://www.fe.up.pt/~fpinho/research/
menur.html.
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Appendix A

A.1. Part 1. Analytical solution for imposed wall heat flux

The following expressions complete the analytical solu-
tion of Section 3.

– Inner wall temperature, Tþi

Tþi ¼
Wð4X� 8yþ

2

� þ 3Þ
32yþ2

�
þWc2

¼ Wj2ð4Xþ 3Þ ln j
16ðj2 � 1Þ þWð4c2 � 1Þ

4
ðA:1:1Þ

– Outer wall temperature,

Tþo ¼ 0 ðA:1:2Þ
– Bulk temperature, Tþ

Tþ ¼W2½3P 1ðlnjÞ3þ2ð1�j2ÞP 2ðlnjÞ2�9ðj2�1Þ2P 3 lnjþ108Xðj2�1Þ3�
576Y 2j2ðj2�1Þ2 lnj

ðA:1:3Þ
with

P 1 ¼ ðj6 þ j4Þð12Xþ 7Þ þ j2ð36Xþ 96c1 þ 7Þ � 12Xþ 7

P 2 ¼ j4ð24Xþ 108c1 � 144c2 þ 25Þ
þ j2ð60Xþ 252c1 � 144c2 þ 25Þ � 66Xþ 25

P 3 ¼ j2ð5X� 32c1 þ 32c2 � 3Þ þ 3ð7X� 1Þ
Nui ¼
576Y 2jðjþ 1Þðj� 1Þ2 ln j½2ðc3 þ 1Þðj2 � 1Þ � j2 ln j�

WXf6I1ðln jÞ3 þ 4ðj2 � 1ÞI2ðln jÞ2 þ 9ðj2 � 1Þ2½I3 þ 64j2Y 2T �i =ðW2XÞ� ln jþ 108ðj2 � 1Þ3g
ðA:2:2Þ

Nuo ¼
576Y 2ðjþ 1Þðj� 1Þ2 ln j½ln j� j4ð2c3 þ 1Þ þ 2c3j2 þ 1�

WXf6I1ðln jÞ3 þ 4ðj2 � 1ÞI2ðln jÞ2 þ 9ðj2 � 1Þ2½I3 þ 64j2Y 2=ðW2XÞ� ln j� 108ðj2 � 1Þ3g
ðA:2:3Þ
– Inner wall Nusselt number, Nui

Nui ¼
�576j2ðj�1Þ2ðjþ1Þ3 lnj

WðjþUÞ 3 W
Y 2 P 1ðlnjÞ3þ2ð1�j2ÞQ1ðlnjÞ2�9ðj2�1Þ2Q2 lnjþ108X W

Y 2 ðj2�1Þ3
h i

ðA:1:4Þ
with

Q1 ¼j4ð72Xþ 54Þ þ W

Y 2
P 2

Q2 ¼16ð4c2 � 1Þj2 þ W

Y 2
P 3
– Outer wall Nusselt number, Nuo

Nuo ¼
�576Uj2ðj�1Þ2ðjþ1Þ3 lnj

W2

Y 2 ðjþUÞ½3P 1ðlnjÞ3þ2ð1�j2ÞP 2ðlnjÞ2�9ðj2�1Þ2P 3 lnjþ108Xðj2�1Þ3�

ðA:1:5Þ
A.2. Part 2. Analytical solution for imposed wall

temperature

The following expressions complete the analytical solu-
tion of Section 4 and are valid regardless of whether wall
temperatures are equal or not, except for the constants of
integration, the definitions of the Brinkman number, nor-
malised temperature and inner wall temperature T �i .

– Bulk temperature, T �

T � ¼W2X½6I1ðlnjÞ3þ4ðj2�1ÞI2ðlnjÞ2þ9ðj2�1Þ2I3 lnj�108ðj2�1Þ3�
576Y 2j2ðj2�1Þ2 lnj

ðA:2:1Þ

with

I1 ¼j6 þ j4 � j2ð48c3 þ 11Þ þ 13

I2 ¼j4ð54c3 � 72c4 � 13Þ þ j2ð126c3 � 72c4 þ 5Þ � 58

I3 ¼27� j2ð32c3 � 32c4 � 11Þ

– Inner wall Nusselt number, Nui
– Outer wall Nusselt number, Nuo
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